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ABSTRACT 

The primary objective of this work is to propose a state-of-the-art physics based 

multiscale modeling framework for simulating material phase change problems. Both ice 

melting and copper crystallization problems are selected to demonstrate this multiscale 

modeling and simulation. The computational methods employed in this thesis include: 

classical molecular dynamics, finite element method, phase-field method, and multiscale 

(nano/micro coupling) methods.  

Classical molecular dynamics (MD) is a well-known method to study material 

behaviors at atomic level. Due to the limit of MD, it is not realistic to provide a complete 

molecular model for simulations at large length and time scales. Continuum methods, 

including finite element methods, should be employed in this case.  

In this thesis, MD is employed to study phase change problems at the nanoscale. 

In order to study material phase change problems at the microscale, a thermal wave 

method one-way coupling with the MD and a phase-field method one-way coupling with 

MD are proposed. The thermal wave method is more accurate than classical thermal 

diffusion for the study of heat transfer problems especially in crystal based structures. 

The second model is based on the well-known phase-field method. It is modified to 

respond to the thermal propagation in the crystal matrix by the thermal wave method, as 

well as modified to respond to temperature gradients and heat fluxes by employing the 

Dual-Phase-Lag method. Both methods are coupled with MD to obtain realistic results. 

It should be noted that MD simulations can be conducted to obtain 

material/thermal properties for microscopic and/or macroscopic simulations for the 

purpose of hierarchical/sequential multiscale modeling. These material parameters 

include thermal conductivity, specific heat, latent heat, and relaxation time. Other type of 

interfacial parameters that occur during the phase change process, such as nucleus shape, 
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interfacial energy, interfacial thickness, etc., are also obtained by MD simulation since 

these have so far been too difficult to measure experimentally.  

I consider two common phase change phenomena, ice melting and copper 

crystallization, in this thesis. For the case of ice melting, MD is first employed to study 

its phase change process and obtain thermal properties of ice and water. Several potential 

models are used. I conduct simulations of both bulk ice and ice/water contacting cases. It 

is found that various potential models result in similar melting phenomena, especially 

melting speed. Size effects are also studied and it is found that the melting time is longer 

for larger bulk ice segments but that the average melting speed is size dependent. There is 

no size effect for the melting speed at ice/water interface at the nanoscale if the same 

temperature gradient is applied. The melting speed of ice should depend on the 

temperature gradient. To study ice melting at the microscale, the thermal wave model is 

employed with parameters obtained from MD simulations. It is found that ice melting 

speed is scale, for both length scale and time scale, dependent.  

For the case of copper crystallization, an EAM potential is first employed to 

conduct MD simulations for studying the copper crystallization process at the nanoscale. 

I obtain thermal properties and interfacial parameters, including thermal diffusion 

coefficient, latent heat, relaxation time, interfacial thickness, interfacial energy and the 

anisotropy coefficients, and nucleus shape etc. A central symmetry parameter is used to 

identify an atom in solid state or liquid state. And then an initial nucleus shape is 

obtained and used as the input for microscale simulation, in which the phase-field method 

is used to study copper crystallization at the microscale. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivations 

Phase change problems, including melting and solidification, are very important 

in many engineering applications such as the freezing of food, metal processing, and 

solidification of castings. 

Recently, nano-materials and devices with desirable structures have become a 

promising field with the development of nanotechnology. In order to manufacture new 

nanomaterials, it is important to understand the underlying mechanisms of material 

formation. These processes involve chemical and physical effects including: 1) The early 

stage of nucleation due to supercooling; 2) The transitional stage of nanocrystallization in 

terms of nanocrystal patterns, growth orientations, growth rates, liquid/solid interface 

microstructure, and interface topology; 3) The late stage of nanocrystal growth and 

nanoparticle/crystal formation; and 4) The final stage of solid-state phase transitions and 

final physical, chemical and mechanical heterogeneities. All of those stages influence the 

final material properties. For example, the microscopic size and shape of nanocrystal will 

determine the final thermal properties and failure characteristics. Therefore, it is a critical 

need to simulate the phase change processes of nanomaterials at both nano and micro 

scales in order to control and predict the resulting material properties.  

Many efforts have been devoted to the study of phase change mechanisms. 

However, the details of phase change processes are not yet fully understood. For 

example, most microscale numerical methods assume that interfacial thickness is 

constant. However, it is still not clear what the interfacial thickness is for a given material 

at a supercooling condition. Although phase change mechanisms can be observed at the 

nanoscale via MD simulations, it is difficult to predict the phase change phenomena at 

larger length and time scales due to the inherent limitations of MD. On the other hand, 
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the conventional phase-field method for phase change problems employs the classical 

thermal diffusion equation, which is considered to describe macroscopic behaviors over 

many grains during at long time scales. It is obviously not proper to use the thermal 

diffusion equation at the microscale.  

At the present time, researchers study phase change problems at either nanoscale 

or microscale. No work has yet coupled these two scales. This challenge motivates me to 

study the mechanisms of phase change problems in a multiscale-based manner.  

In this thesis, two phase change problems are considered. One is ice melting, and 

the other is copper crystallization. MD and conventional phase field method, the 

following methods are developed and employed in this thesis: 

a) A thermal wave model replaced the thermal diffusion model is one-way 

coupled with MD via employing the parameters obtained from MD simulations. 

b) A multiscale based phase-field method, which also uses thermal parameters 

obtained from MD simulation. In addition, the interfacial parameters such as interfacial 

thickness, initial nucleus shape which are often assumed in current research are 

calculated from MD simulation. This multiscale one-way coupling method thus improves 

computational accuracy at the microscale as compared with classical phase change 

simulations. 

1.2 Objective of the study  

The primary goal of this work is to provide a state-of-the-art, multiscale-based 

framework to model and simulate material phase change problems, including ice melting 

and copper crystallization, at the nano/microscales. The goal can be achieved with the 

following objectives: 

1) Conduct MD simulations to simulate phase change problems of ice melting 

and copper crystallization. 

2) Calculate thermal properties and interfacial parameters via MD simulations. 
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3) Couple the thermal wave method with MD simulations to study ice melting at 

the microscale. 

4) Develop the phase-field method one-way coupling with MD results to study 

copper crystallization at the microscale. 

To the author’s knowledge, there’s no existing or finished integrated project 

which intends to accomplish all of the above tasks. In this thesis, the above objectives are 

accomplished via MD simulations and the new multiscale simulation methods developed 

here. The model and methods developed in this thesis can be easily extended to other 

materials and other phase change problems. 

1.3 Contents of the thesis  

In Chapter 2, I present the scientific background and the literature review of phase 

change problems. The research on phase change problems simulated via conventional 

numerical methods at the macroscale and microscale as well as the classical MD method 

at the nanoscale are also reviewed. 

In Chapter 3, the methodologies to model and simulate phase change problems at 

the nano/microscale are presented. At the nanoscale, MD is described. Then the 

techniques for how to calculate thermal properties and interfacial parameters via MD 

simulations are presented. Next a multiscale method in which the thermal wave method is 

employed to study phase change problems at the microscale while the intrinsic 

parameters are obtained via MD simulations is proposed. In addition, a multiscale-based 

phase-field to study nucleus growth during copper crystallization is developed.  

MD simulations are first conducted to study ice melting process at the nanoscale 

in Chapter 4. Various potential functions are employed in similar melting process for 

both ice bulk and ice/water contacting. Then the proposed thermal wave method is used 

to study ice melting at the microscale and compared the speed with the ones at the nano 

and macro scales.  
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In Chapter 5, MD simulations are first conducted to study copper crystallization at 

the nanoscale. The thermal properties and interfacial parameters are obtained and then 

used as input parameters for my developed multiscale-based phase-field model. The 

results are compared with MD simulation and macroscale results.  

Chapter 6 presents the summaries and conclusions. Recommendations of future 

work are also presented. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Material phase change problems 

A phase change is the transformation of a material from one phase or state of 

matter to another phase or state. It includes phase changes between solid, liquid and 

gaseous states of matter. Figure 2.1 shows an often observed phenomenon, ice melting. 

During a phase change process of a given material, several properties of the material will 

change as a result of external conditions, including temperature, pressure and others. The 

measurement of the external conditions at which the transformation occurs, is termed as 

the phase transition point. For example, the melting point of a solid is the temperature at 

which a solid can transform to a liquid. 
 

 

Figure 2.1 Ice melting phenomenon in nature       
 
                       Source: UNIONGAS, www.uniongas.com 
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Since phase change problems are often seen phenomena in nature and are very 

important in engineering applications, significant efforts have been made to elucidate the 

physical processes. Here, a review of analytical solutions and numerical methods for this 

type of problems at the macroscale is presented, as well as numerical methods including 

phase-field and level set methods at the microscale and MD at the nanoscale.   

2.1.1 Analytical solution at the macroscale 

Initially, macroscale simulations of phase change problems focused on how to 

obtain analytical solutions. Early analytical methods were proposed by Lame and 

Clapeyron [1] in 1831 and Stefan [2] in 1891, to describe ice formation. The simplest 

phase change problem is a one-phase problem first solved analytically by Stefan [2]. 

Therefore, a phase change problem is often called as Stefan problem.  

Neumann [3] extended Stefan’s solution to the two-phase problem, which is more 

realistic for phase change problems. Figure 2.2 illustrates the two-phase problem clearly. 

 

  

                  Figure 2.2 Solidification in a half space for the two phase problem 
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In the case described by Figure 2.2, a liquid at a uniform temperature iT , that is 

higher than the melting temperature mT ,is confined to a half space. The liquid/solid 

interface is at )(tΓ , existing at the melting temperature. A constant temperature 0T  below 

mT , is imposed on the face at 0=x . With assumptions of constant material properties, 

the problem can be mathematically expressed as follows: 

 
2

2

x
T

t
T

∂
∂

=
∂

∂
α , )(tx Ω∈                                           (2.1) 
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where T  is the temperature field, α is the thermal diffusivity, k is the thermal 

conductivity, ρ is the density of material, fL  is the latent heat of fusion, Ω  is the 

simulation domain including solid and liquid phases, and subscript s and l donate solid 

and liquid phases. 

Equation (2.1) is the thermal diffusion equation. Equation (2.2) is the enforced 

condition at the phase change interface, and Equation (2.3) expresses the release or 

absorption of the latent heat at the interface.  

By assuming the solution in solid and liquid phases in a certain form and defining 

the interface position as 2/1)(2)( tt sαλ=Γ , Neumann [3] obtained the exact solution by 

solving the coupled Equations (2.1) to (2.3). The solution has an explicit expression for 

the temperature distributions in both solid and liquid phases, respectively, shown in 

Equations (2.4) and (2.5), where the coefficient λ  is calculated through Equation (2.6). 
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However, Neumann’s solution is available only for phase change problems in the 

rectangular coordinate systems. For phase change problems in the cylindrical coordinate 

system, Paterson [4] had shown the exact solution can be expressed as an exponential 

integral function. Equations (2.7) and (2.8) show the temperatures in the solid and liquid 

phases, respectively. The constant λ  is determined from transcendental equation (2.9). 

The solid/liquid interface position is formulated the same as the one in Neumann’s exact 

solution. 
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where Q is a line heat source of strength located at 0=r , Ei  is an exponential integral 

function, and r is the radius of the cylinder. 

It should be noted that exact solutions only exist for semi-infinite problems. There 

is no exact solution available for the melting or solidification of a slab with a finite 

thickness. Therefore, the integral method must be used to obtain approximated solutions 

for such problems including heat flux boundary conditions without constant 

temperatures. The integral method, which dates back to von Karman and Pohlhausen, 

who used it to solve boundary layer equations, was applied by Goodman [5] to solve a 

one dimensional transient melting problem. It was subsequently employed by many 

researchers [6-9] for solving various types of one-dimensional phase change problems. 

This method provides a relatively straightforward and simple approach to phase change 

problems. The method is outlined below: 
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a) Assume that the temperature distribution depends on the spatial variable in a 

particular form which is consistent with the boundary condition. The assumed solution, 

for example, could be a polynomial approximation; 

b) Integrate the heat conduction equation with respect to the spatial variable over 

the appropriate interval and substitute the assumed form of the temperature distribution to 

attain the heat balance integral; 

c) Solve the integral equation to obtain the solutions for temperature distribution 

and moving boundaries. 

Goodman [5] used this method to solve a single phase ice melting problem and 

two phase slab solidification problems. The approximated solutions they obtained were 

quite good when compared with exact solutions. The integral method has been 

extensively applied to different problems; however, the mathematical manipulations for 

complex problem can be very complicated and cumbersome. Moreover, selecting a 

satisfactory approximation to the temperature distribution is a major difficulty in this 

method. For example, the use of a high order polynomial makes very complicated 

analysis, and even does not necessarily improve the accuracy of the solution. 

2.1.2 Numerical methods at the macroscale 

When analytical methods are not available, numerical methods can be used to 

solve the phase change problems. Finite difference methods (FDM) and Finite element 

methods (FEM) are two popular techniques for numerical analysis. Each has its own 

advantages and disadvantages. With the development of more advanced and powerful 

computers, more sophisticated numerical models have been developed to handle 

multidimensional problems with very complex geometries. 

A fixed grid method [6- 12] (for both FEM and FDM) was developed to conduct 

numerical analyses. In this method, the space and time domains are subdivided into finite 

number of equal grids with △x, △t during the simulations, as illustrated in Figure 2.3. 
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The moving solid/liquid interface will in general lies somewhere between two grids at 

any given time steps. The new temperature is updated from temperatures of the previous 

time step on the basis of the following formulation: 

)2)(( ,1,,12,1, ninibnibnibnib TTT
x
tTT +−+ +−

∆
∆

+=
                          

(2.10) 

 

 

Figure 2.3 Illustration of fixed grid method 

Crank [6] used this method to estimate the location of the interface by a suitable 

three point Lagrange interpolation formula shown as following: 
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It should be noted that the above numerical solutions were obtained by FDM. 

C.K. Chun [10] used this method with an implicit time integration to solve phase change 

problems and obtained excellent solutions.  
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FEM with fixed grids were also widely used by researchers. Boris [11] used a 

FEM to solve one dimensional phase change problem, and E. Feulvarch [12] presented an 

implicit fixed grid method for the finite element analysis of phase change problems. 

The major advantage of fixed grid method is that it can handle multidimensional 

problem efficiently without many difficulties. However, this method may sometimes be 

unstable when the boundary moves a distance larger than a space increment in a time 

step. Therefore, the variable grid method was developed to avoid the problems associated 

with the fixed grid method.  

In the variable grid method, the space or time domain is subdivided into equal 

intervals in one direction only and the corresponding grid side in the other direction is 

determined so that the moving boundary (i.e. the solid/liquid phase interface) always 

remains at a grid point.  

The variable grid method based on the variable space grids, also known as the 

dynamic grids, where the time step △t is unique in the time domain. The number of 

spatial intervals is fixed. However, the spatial intervals are adjusted so that the moving 

boundary lies on a particular grid point. Murray and Landis [13] used this method to 

solve a phase change problem based on below equation: 

2

2

)( x
T

x
T

dt
d

t
x

dt
dT

i ∂
∂

+
∂
∂

=
δ

δ
                                              (2.13) 

 Another variable method has various time steps. In this method, the space 

domain is subdivided into fixed equal interval △x, while the time step varies. The 

interface moves with a distance △x during the time interval △t, and always remains at a 

grid point at the end of each time interval. Douglas and Gallie [14] used this method to 

solve some phase change problems. Several variations of a variable time step method 

have been reported by [6, 15]. 
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The enthalpy method has been used by several researchers to solve phase change 

problems in which the material doesn’t have a distinct solid/liquid interface. Instead, the 

melting or solidification takes place over an extended range of temperatures. The solid 

and liquid phases are separated by a two phase moving region. In this approach, an 

enthalpy function is used as dependent variable along with the temperature. The heat 

conduction equation in this method is as follows: 

)( Tk
t
h

∇⋅∇=
∂
∂ρ

                                                       
(2.14) 

where ρ is the density of the material, h  is the enthalpy, k  is the thermal conductivity of 

the material,  and T  is the temperature. 

The enthalpy method treats the enthalpy as an unknown and uses either an explicit 

method or an iterative implicit method to solve the above equation. The relationship 

between the enthalpy and the temperature can be defined in terms of the latent heat 

release characteristics of the phase change material. It always assumed to be a step 

function for isothermal phase change and a linear function for non-isothermal problems.      

Cames [16] used this method for isothermal phase change problems. Tamma [17] 

recently used an explicit enthalpy method in FEM. Thevoz [18] has used an implicit 

enthalpy method to solve phase change problems. 

There are inherent drawbacks in both variable methods and enthalpy methods. 

Various grid methods have a common issue of grid generation for complex interfaces. 

The difficulties increase with the dimension of the problem. Although enthalpy methods 

do not need remeshing, it cannot accurately model materials with an isothermal phase 

change if there is a mushy zone instead of a sharp interface between solid and liquid. 

During last ten years, the extended finite element method (XFEM),which is an 

extension of the methods presented by Belytschko et al [19,20], has been used to solve 

phase change problems. The basic idea of XFEM approaches is to explicitly track the 

interface and to construct enriched finite element spaces depending on the interface 
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position while keeping the mesh fixed. R. Merle and J. Dolbow [21] first attempted to use 

XFEM to solve thermal and phase change problems. It allowed them obtained accurate 

solutions on fixed finite element meshes as there were no concerns about element 

distortion. Jack Chessa et al [22] extended this method enriched with the enrichment of a 

discontinuity in the derivative of the temperature normal to the interface. Their numerical 

examples showed this method is quite stable and free of oscillations along the phase 

interface. 

2.2 Phase-field method for material phase change problems 

Within recent 40 years, solving phase change problems at the microscale has 

become a topic of extensive research [23, 24]. Many mathematical models were 

developed to study the microscopic structure as well as nucleation and crystal growth 

during the phase change process.  

One popular approach is to use phase-field method, which has made a significant 

progress. In this method, an imagery phase-field variable θ is defined as the function of 

time and the interface position. The phase-field variable is introduced to describe whether 

the material is phase changed or not, i.e., solid or liquid. This variable is governed by a 

phase-field control equation that is coupled to heat equation. The interface between solid 

and liquid is described by the phase-field variable that smoothly changes between 0 and 

1, which represent solid and liquid phases respectively. Important physical mechanisms 

during phase change processes, such as curvature, anisotropy and kinetics effects, are 

implicitly incorporated in the phase-field control equation. This results in many 

computational advantages. The typical phase-field model for pure material is: 

Tk
L

Tc t
f

tv ∆=+ θρ
2                                              

(2.15) 

),(22 TFt θθεθαε θ−∆=                                          (2.16) 
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Equation (2.15) is a modified thermal diffusion equation and Equation (2.16) is 

the phase equation, where ε  is the thickness of the interface like shown in Figure 2.4, 

),( uF θ  is the free energy density function to describe the solid and liquid phases which 

can take on many forms, ρ is the density of the material, vc  is the specific heat, T  is the 

temperature distribution, fL  is he latent heat of fusion, k is the thermal conductivity, and 

α is the relaxation scaling. 

 

 

Figure 2.4 Illustration of the phase-field model in one-dimension 

The phase-field method is usually constructed in such a way that in the limit of 

small interface width the correct interfacial dynamics is recovered. This approach permits 
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to solve the problem by integrating a set of partial differential equations for all the 

system, thus avoiding the explicit treatment of the boundary conditions at the interface.  

This phase-field model was first introduced by Fix [25] and Langer [26], and has 

been experienced a growing interest in solidification and other areas. Caginalp and Fife 

[27] proposed a phase-field model that introduced surface tension and other important 

interfacial parameters. They found that the classical phase change problems (sharp 

interface problems) could be recovered mathematically by using the phase-field approach 

as a numerical method to smooth solution over a thin interface with finite interfacial 

thickness, in which effects of surface tension and supercooling were included. In 

addition, Penrose and Fife [28] derived a thermodynamically consistent phase-field 

model, and Wang et al. [29] presented this model based on the first and second thermal 

dynamics laws. The overview of this method for phase change problems can be found in 

Boettinger et al [30]. 

The major pro of the phase-field method is that it can avoid to first distinguishing 

the boundaries of interface mathematically. Indeed, the interface can be obtained from the 

numerical solution for the phase-field variable. One of the cons of the phase-field method 

is the significant computational effort required, especially when investigating dendritic 

growth in the presence of convection and multiple array dendritic growth. However, it 

can be improved by using the techniques of adaptive gridding and parallel computation. 

Another con is related to the large number of parameters involved in the governing 

equations. These parameters are difficult to determine for accurate physical crystal 

growth simulation of real materials. 

2.3 Level set method for material phase change problems 

Another alternative approach is to use the level set method, which was first 

introduced by Osher et.al. [31]. It has been applied to elucidate many physical 

phenomena [32]. In this method, the interface is described by a level set variableφ , which 
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equals to 0 at the solid-liquid interface. Indeed, the interface is always represented by the 

zero level set of a smooth, continuous function. The main advantage of the level set 

method is that the interface is never explicitly tracked and complicated interface topology 

can be easily represented. The interface front is advanced by solving the level set 

equation: 

0=∇⋅+ φφ vt
r

                                                                  (2.17) 

where vr is the velocity field. The phase changed materials and unchanged materials are 

represented by the value where 0<φ  and 0>φ respectively. 

A simple level set method was proposed by Chen et.al. [32]. They used an 

implicit time discretization method to keep tracking the interface and to solve the thermal 

diffusion field. However, their method is limited to one and two dimensional cases. Kim 

[33] extended this method in a more accurate manner and obtained results in excellent 

agreement with the predictions of microscopic solvability theory. However, both of 

methods were lack of symmetry and made this approach computationally expensive. In 

addition, they directly applied temperature boundary conditions on the interface as well 

as the computation of heat fluxes from the temperature nodal values. This usually leaded 

to energy conservation issues associated with the discretization error. It may result in 

large variation of the results if different sizes and orientations of mesh are used.  

Tan and Zabaras [34] recently used the level set method combining features of 

front-tracking and fixed domain methods to study dendritic solidification phase change 

problems. The computed results agree very well with available analytical solutions as 

well as with the ones obtained via front-tracking techniques. Wang et al [35] conducted 

simulations by parallelizing level set method to study phase change problems. Numerical 

results were reported to demonstrate the advantages of using their method. 
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2.4 Molecular dynamics simulation for material phase 

change problems 

In order to understand the mechanism of phase change at a molecule resolution, 

MD simulations are usually conducted. They can provide important information about 

melting or solidification of material at the atomistic level. MD is one of numerical 

simulations in which atoms and molecules are allowed to interact with each other for a 

period of time by approximation of known physics, giving a view of the motion of the 

atoms/molecules. Beginning in the theoretical physics, MD method gains popularity in 

materials science. It is used to examine the dynamics of atomic level phenomena that 

cannot be observed directly, such as atoms nucleation and thin film growth. It is also a 

powerful tool to be used to examine the physical properties of nanomaterials that have 

not or cannot yet be created. 

However, due to current computer resources, the size of MD simulation system 

cannot be too large. The computation time of a MD simulation depends on the size of 

system and the total time interval simulated. It may take several days even months to 

perform a single MD simulation. In addition, MD simulations with a long time are 

mathematically ill-conditioned, generating cumulative errors in numerical integrations. 

Although the error can be minimized with proper selection of algorithms and parameters, 

it cannot be eliminated thoroughly. Furthermore, most current potential functions are 

empirical and not sufficiently accurate to reproduce the dynamics of molecular systems in 

many cases.  

At the early stage of computer simulation of materials [36, 37], researchers 

mainly focused on observing physical phenomena at single phase, i.e. liquid, solid or gas. 

The first computer simulation of liquid water was performed by Watts and Barker [38]. 

They used the Monte Carlo method to calculate water structure and properties at room 

temperature. The simulation of ice was first conducted by Rahman and Stillinger [39, 40]. 

They computed the dipole correlations and Kirkwood correlation factor of ice 1c and ice 
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1h.Holender [41] used Finnis-Sinclair many-body potential to study the properties of 

solid and liquid copper. With the development of MD theory and computer techniques, 

research groups employed MD simulations of water/ice to study the dynamics of the two-

phase interface over the last two decades. Karim and Haymet [42-45] and other groups 

[46-53] did much work on simulating the interface between water and ice 1h.  

For material phase change problems, Rose and Berry [54] performed MD 

simulation of the melting process of a KCl cluster composed of 64 ions. Alper and 

Politzer [55] studied the temperature-dependent behavior of aluminum, copper, and 

platinum by MD simulations. Luo et al. [56] performed MD simulations to investigate 

nonequilibrium melting and crystallization of the Lennard-Jones system, and evaluated 

several interfacial kinematic parameters. These simulations enhanced studies of the 

mechanism of phase change at the nanoscale via investigating the motion of individual 

atoms. 
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CHAPTER 3 

METHODOLOGIES 

3.1 Molecular dynamics 

MD can be viewed as a bridge between atomic length and time scales and the 

micro-/macro-scopic world. It serves as an advanced method to understand the properties 

of systems of molecules in terms of their structure and the atomic interactions between 

them. MD method is based on Newton’s second law or the equation of motion maF = , 

where F is the force exerted on a particle, m is its mass and a is its acceleration. By 

determining the acceleration of each atom in the simulation system and integrating of the 

equations of motion, the positions, velocities, and accelerations of the particles will be 

determined then. Therefore, the average values of properties of the system can be 

determined, such as temperature, pressure etc. This method is deterministic. In other 

words, once the positions and velocities of each atom are known, the state of the system 

can be predicted at any time in the future or the past.  

Generally, Newton’s equations of motion for each atom are given as following: 

ii rF &&im=                                                                        (3.1) 

where iF  is the force exerted on atom i , im  is the mass of atom i  and ir&&  is the 

acceleration of atom i , which is the second derivative of position of atom i  with time. 

The force can also be expressed as the gradient of the potential energy )(rU  if there are 

no external forces: 

)(rFi Ui−∇=                                                                  (3.2) 

Combining these two equations, Newton’s equations of motion can then be 

expressed as the derivative the potential energy to the changes in position as a function of 

time. 

2

2

)(
dt
d

mU ii
ir

r =∇−                                                              (3.3) 
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3.1.1 Potential functions  

To elucidate physical phenomena at the nanoscale via MD simulation, the key is 

to employ a potential function which can describe how the atoms/molecules to interact 

with each other properly. Potentials are embodying a classical treatment of particle-

particle interactions that can reproduce structural and conformational changes, but 

usually cannot reproduce chemical reactions. 

The potential function is a function of the atomic positions of all the atoms in the 

system, and usually expressed in terms of Cartesian coordinates. It can be subdivided into 

two parts: internal or bonded interaction which describes the bonds, angles and bond 

rotations in a molecule, and external or non-bonded interaction which accounts for the 

force between non-bonded atoms or atoms separated by 3 or more covalent bonds. 

bondednonbonded EEU −+=)(r                                                 (3.4) 

Bonded interactions are based on a fixed list of atoms. The main bonded 

interactions include bond stretching, bond angle, and dihedral angle interactions. A 

special type of dihedral interaction is used to force atoms to remain in a plane or to 

prevent transition to a configuration of opposite chirality. These bonded interactions are 

summarized in Table 3.1. 

The non-bonded interaction has two components, the Van der Waals interaction 

and electrostatic interaction. In many simulations, simplest pair potential is often 

employed for Van der Waals interaction, in which the total potential energy can be 

calculated from the sum of energy contributions between pairs of atoms. An example of 

such a pair potential is 6- 12 potential (Lennard – Jones potential): 

6

6

12

12

ij

ij

ij

ij
waalsderVan r

C
r
C

E −=−−                                                    (3.5) 

where the parameters 12
ijC  and 6

ijC  are various for different pairs of atom types. There is a 

potential called many body potential, in which the potential energy includes the effects of 
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three or more particles interacting with each other. The EAM potential is a typical many 

body potential, where the electron density of states in the region of an atom is calculated 

from a sum of contributions from surrounding atoms, and the potential energy 

contribution is then a function of the sum. 

Table 3.1 Description of bonded interactions 

Schematic Diagram Interactions Formulations 
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The electrostatic interaction between a pair of atoms is represented by Coulomb 

potential, and it is given by: 

ijr

ji
ticelectrosta r

qq
fE

ε
=                                                (3.6) 

where f  is the constant as 138.935, and rε is the relative dielectric constant. 

3.1.2 Integration algorithm 

The potential energy is a function of the atomic positions ( N3 ) of all the atoms in 

the system. Due to the complicated nature of this function, there is no analytical 

solution to the equations of motion; they must be solved numerically. 

A variety of different numerical methods are developed to integrate Newton’s 

equations of motion for updating positions of atoms from time to time. In a choosing 

integration method, the algorithm should conserve energy and momentum, and it should 

permit a long time step for integration and computationally efficient. The most often used 

algorithm is listed as follow: 

l Leap-frog algorithm 

l Verlet algorithm 

l Velocity Verlet 

l Predictor-corrector 

l Beeman’s algorithm 

In my work, two of them are mainly used. The first one is Leap-frog algorithm 

which is most commonly used in MD simulations. Based on Taylor expansions for the 

positions )(tr , the Leap-frog algorithm can be expressed as: 

tttttt ∆+∆−=∆+ )()2/()2/( avv                                  (3.7 ) 

                                               tttttt ∆∆++=∆+ )2/()()( vrr      

In this algorithm, the velocities are first calculated at time 2/tt ∆+  and then used 

to calculate the positions r  at time tt ∆+ . Consequently, the velocities leap over the 

http://www.ch.embnet.org/MD_tutorial/pages/MD.Part1.html
http://www.ch.embnet.org/MD_tutorial/pages/MD.Part1.html
http://www.ch.embnet.org/MD_tutorial/pages/MD.Part1.html
http://www.ch.embnet.org/MD_tutorial/pages/MD.Part1.html
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positions, and the positions leap over the velocities. It is of third order in r , and it is 

time-reversible. The advantage of this algorithm is that the velocities are explicitly 

calculated. However, the disadvantage is that they are not calculated at the same time as 

the positions. 

Another integration algorithm used in my simulation is the predictor-corrector 

algorithm [57]. The goal is to solve the second-order differential equation: 

),( trr,fr &&& =                                                                    (3.8) 

where f  is related to the forces in Newton’s equation (3.1) by m/Ff = , here F  is from 

Equation (3.2). The first step of Predictor-corrector algorithm consists of evaluating the 

atoms’ positions and velocities at time tt ∆+ from the positions and the velocities at time

tit ∆− , where i=0, 1,……k-2, and k is being the order of the predictor part. The 

extrapolation for atoms positions is given by  

∑
−

=

∆−+∆+∆+=∆+
1

1

2 )]1[()()()(
k

i
i tittttttt frrr iii α&

                     
 (3.9) 

and the coefficients }{ iα must satisfy the set of 1−k equations 

,
)2)(1(

1)1(
1

1
∑

−

= ++
=−

k

i
i

q

qq
i α q=0,……,k-2                                  (3.10) 

These and the subsequent sets of linear equations are readily solved; the 

coefficients are all rational fractions. For the velocities, 

∑
−

=

∆−+∆+−∆+=∆+∆
1

1

'2 )]1[()()()(
k

i
i titttttttt frrr iii α&                      (3.11) 

with the coefficients that satisfy equations 

∑
−

= +
=−

1

1

'

)2(
1)1(

k

i
i

q

q
i α

                                                  
 (3.12) 

After computing the value of )( tt ∆+f  using the predicted values of ir  and ir& , the 

corrections are made with the aid of the Adams-Moulton formula: 
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∑
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=
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k

i
i tittttttt frrr iii β&                  (3.13)              
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 (3.14) 

with the coefficients obtained from 

,
)2)(1(
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q
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i β                  (3.15) 

It should be noted that the predicted values do not appear in the corrector formula, 

except for their involvement in evaluating f . The coefficients },,,{ ''
iiii ββαα  obtained by 

solving these equations for k=4 and 5 are listed in Table 3.2. 

Table 3.2 Predictor-corrector coefficients for second-order equations 

k=4(×1/24) 1 2 3  

iα  19 -10 3  

'
iα  27 -22 7  

iβ  3 10 -1  

'
iβ  7 6 -1  

k=5(×1/360) 1 2 3 4 

iα  323 -264 159 -38 

'
iα  502 -621 396 -97 

iβ  38 171 -36 7 

'
iβ  97 114 -39 8 
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The Predictor-corrector algorithm gives more accurate positions and velocities 

than the leapfrog algorithm, and is therefore suitable in very “delicate” simulations. 

However, it is computationally expensive and needs significant storage. 

3.1.3 Periodic boundary conditions 

Constrained by computer resources, a finite sample is always used for MD 

simulations. If considering 1000 atoms arranged in a 10×10×10cubic simulation box, 

nearly half the atoms are on the outer faces, and these will have a large effect on the 

measured properties. Even for a system of 1 million atoms, the number of surface atoms 

still amount to 6% of the total. It is still nontrivial [57]. The classical method to minimize 

surface effects in a finite system is to apply periodic boundary conditions (PBC). The 

atoms of the system to be simulated are put into a space-filling box, which is surrounded 

by translated copies of itself (Fig. 3.1). Thus there are no boundaries of the system; the 

artifact caused by unwanted boundaries in an isolated cluster is now replaced by the 

artifact of periodic conditions. 

 

Figure 3.1 Periodic boundary conditions 

                          Source: Michael P. Allen [57] 
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During MD simulation, if an atom passes through one face of the simulation box, 

it will reappear on the opposite face with the exactly same velocity. This is shown in 

Figure 3.1. Moreover, it is important to bear in mind the imposed artificial periodicity 

when considering properties which are influenced by long-range correlations. Special 

attention must be paid to the case where the potential range is not short: for example for 

charged and dipolar systems. 

3.1.4 Temperature regulation 

Several reasons such as drift during equilibration drift as a result of force 

truncation and integration errors, heating due to external or frictional forces, are 

influencing the measured properties of MD simulation. Therefore, it is necessary to 

control the temperature of the system. Two temperature regulation methods are used in 

my work. One is the weak coupling scheme of Berendsen [58], another is the extended 

ensemble Nose-Hoover scheme [59]. 

The Berendsen thermostat couples the simulation system to an external heat bath 

with fixed temperature T0 to maintain the temperature of the system. The velocities are 

then scaled at each time step, so that the temperature deviation is proportional to the 

difference in temperature: 

τ
TT

dt
dT −

= 0

                                                                      
(3.16) 

where τ  is the coupling parameter which determines how tightly the external heat bath 

and the system are coupled together.  This method of coupling has the advantage that the 

strength of the coupling can be varied and adapted to the user requirement: for 

equilibration purposes the coupling time can be taken quite short (e.g.0.01 ps), but for 

reliable equilibrium runs it can be taken much longer (e.g. 0.5 ps) in which case it hardly 

influences the conservative dynamics. 

The change in temperature between successive time steps is: 
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)( 0 TTtT −=∆
τ
δ

                                                               
(3.17) 

Therefore, the time-dependent scaling factor for the velocities can be expressed 

as: 

2/10 }]1
)2/(

{1[ −
∆−

∆
+=

ttT
Tt

Tτ
λ

                                                 

(3.18) 

The )2/( ttT ∆−
 
in Equation (3.15) is due to the fact that the leap-frog integration 

algorithm is used in MD simulation. The parameter Tτ  is close to, but not exactly equal 

to the time constantτ in Equation (3.14): 

kNC dfTtV /2 ττ =                                                                      (3.19) 

where VC  is the total heat capacity of the system, k  is Boltzmann’s constant, and dfN  is 

the total number of degrees of freedom. In practice, τ is used as an empirical parameter to 

change the strength of the coupling. If τ is extremely large to infinite, then the Berendsen 

thermostat is inactive. The temperature fluctuations will grow until they reach the 

appropriate value of a microcanonical ensemble. On the other hand, too small values of 

τ will cause unrealistically low temperature fluctuations. Values of ps1.0≈τ  are 

typically used in MD simulations. The Berendsen temperature coupling is stable up to

tT ∆≈τ .  

The Berendsen temperature coupling is extremely efficient for relaxing a system 

to the target temperature, but once the system has reached equilibrium it might be more 

important to probe a correct canonical ensemble. To enable canonical ensemble 

simulations, the extended system method was first introduced by Nose and later modified 

by Hoover [59]. The system’s Hamiltonian is extended by introducing a thermal reservoir 

and a friction term in the equations of motion. The friction force is proportional to the 

product of each particle’s velocity and a friction parameter ξ which is a fully dynamic 

quantity with its own equation of motion; the time derivative is calculated from the 

difference between the current kinetic energy and the reference temperature. 
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In Hoover’s formulation, the particles’ equations of motion are replaced by 

dt
d

mdt
d

i

iii rFr ξ−=2

2

                                                            
(3.20) 

where the equation of motion for the heat bath parameter ξ  is 

)(1
0TT

Qdt
d

−=
ξ

                                                               
(3.21) 

The reference temperature is denoted T0, while T is the current instantaneous 

temperature of the system. The strength of the coupling is determined by the constant Q 

which is usually called the ’mass parameter’ of the reservoir in combination with the 

reference temperature. In order to avoid change Q in proportion to the change in 

reference temperature, it’s better to directly relate Q to 0T  via: 

2
0

2

4π
τ TQ T=

                                                                      
(3.22) 

This provides a much more intuitive way of selecting the Nose-Hoover coupling 

strength (similar to the weak coupling relaxation), and in addition Tτ  is independent of 

system size and reference temperature. 

3.1.5 Pressure coupling 

Because of the same reasons as the temperature coupling, the system also needs 

pressure regulations. Both the Berendsen algorithm that scales coordinates and box 

vectors each time step, and the extended ensemble Parrinello-Rahman approach are used 

in my work.  

The Berendsen pressure coupling rescales the coordinates and box vectors every 

step with a matrix μ, which has the effect of a first-order kinetic relaxation of the pressure 

towards a given reference pressure 0P  

P

PP
dt
dP

τ
−

= 0

                                                           
(3.23) 
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The scaling matrix μ is given by: 

)}({
3 0 tPPt

ijijij
p

ijij −
∆

−= β
τ

δµ
                                                

(3.24) 

where ijβ  is the isothermal compressibility of the system. 

If the fluctuations in pressure or volume are important (e.g. to calculate 

thermodynamic properties), it might at least theoretically be a problem that the exact 

ensemble is not well-defined for the weak Berendsen coupling scheme. For these cases, 

constant-pressure simulations using the Parrinello-Rahman approach [60, 61] should be 

used. With the Parrinello-Rahman barostat, the box vectors as represented by the matrix b 

obey the matrix equation of motion: 

)(1'1
2

2

refPPbVW
dt
db

−= −−

                                                   
(3.25) 

where V  is the volume of the simulation system, W  is a matrix parameter that 

determines the strength of the coupling. The matrices P  and refP  are the current and 

reference pressures, respectively. 

The equations of motion for the particles are also changed, just as for the Nose-

Hoover coupling. 

dt
dM

mdt
d

i

iii rFr
−=2

2

                                                              
(3.26) 

1''
'

1 ][ −− += bb
dt

db
dt
dbbbM                                                    (3.27) 

In most cases, it’s better to use the combination of the Parrinello-Rahman barostat 

with the Nose-Hoover thermostat. In order to avoid increasing the time constant, the 

weak Berendsen coupling scheme is firstly used to reach the target pressure, and then 

switched to Parrinello-Rahman coupling once the system is in equilibrium. 
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3.1.6 Limitations 

Classical MD represents a powerful tool in various communities including 

materials science. However, this method has several limitations. In fact, the atomistic 

systems obey the quantum law instead of a classical law. For very light systems such as 

H2, He and Ne, the approximation via the classical MD is not good. However, MD is good 

for simulating heavier systems such as copper and water. This classical hypothesis can be 

tested through the de Brogile thermal wavelength Λ  for systems consisting of atoms 

[62]: 

2/1
2

)2(
mkT

hπ
=Λ                                                       (3.28) 

where h  is Planck’s constant , 6.62606896(33)×10−34 sJ ⋅ , m  is the mass of the atom, k  

is Boltzmann constant and T is the temperature. Equilibrium thermodynamics properties 

can be computed classically if  

1/ <<Λ a                                                             (3.29) 

where a  is the mean nearest neighbor distance. Since water molecules and copper atoms 

are much heavier than 2H , eH  and eN , Equation (3.29) is sure enough to be satisfied. 

A MD simulation requires a defined potential function. In chemistry and biology 

this is usually referred to a force field. Potentials may be defined at many levels of 

physical accuracy; those most commonly used in chemistry are based on molecular 

mechanics and embody a classical treatment of particle-particle interactions that can 

reproduce structural and conformational changes but usually cannot reproduce chemical 

reactions. However, current potential functions are sometimes not sufficiently accurate to 

reproduce the dynamics of molecular systems. Therefore the simulations are actually 

depending on the ability of the chosen potential to reproduce the behavior of the material 

under the conditions at which the simulation is run.  

MD simulations update a finite sized molecular configuration forwarding in time, 

i.e., in a step-by-step fashion. There are limits on the typical time scale and length scale 

http://en.wikipedia.org/wiki/Potential_function
http://en.wikipedia.org/wiki/Force_field_(chemistry)
http://en.wikipedia.org/wiki/Molecular_mechanics
http://en.wikipedia.org/wiki/Molecular_mechanics
http://en.wikipedia.org/wiki/Classical_mechanics
http://en.wikipedia.org/wiki/Conformational_change
http://en.wikipedia.org/wiki/Chemical_reaction
http://en.wikipedia.org/wiki/Chemical_reaction
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that can be investigated and the consequences must be considered in analyzing the 

results. Simulation runs are typically short. Typical time step is 1femtosecond which is 

1×10-15s, and the typical total number of time step is around 103～106, corresponding to a 

few picoseconds or several nanoseconds of real time. It’s obvious that the computation 

would be very expensive for long time simulation. With the development of computer 

resources, the number of atoms in simulation system is increasing, from hundreds to 

thousands and even millions. However, it will also take a long time for the simulation. 

Currently, it is unachievable for large system and long time simulations by the classical 

MD method. Because of these limitations of MD simulation, alternative methods, such as 

multiscale modeling methods, can be employed to study large nanoscale systems. 

3.2 Temperature behaviors at the microscale 

General approaches to solve phase change problems are all kind of using thermal 

diffusion equation to describe heat conduction during phase changing process. Within 

recent 30 years, some researchers found that unlike the classical theory of heat diffusion 

at the macroscale, the process of heat transport is governed by phonon-electron in 

metallic films and by phonon scattering in dielectric films from a microscopic point of 

view [63]. They attempted to describe the transport of energy by the microscopic energy 

carriers, i.e., electrons, phonons, and photons. Zhang [64] presents a state-of-the-art 

review of microscale heat transfer study. 

3.2.1 Thermal wave model 

In the past 30 years, a thermal wave model was proposed by Cattaneo (Tamma 

and Zhou) [65] to study heat transfer problems at the microscale. It is a modified version 

of Fourier’s law which is thermal diffusion equation: 

Tk
t
qq ∇−=

∂
∂

+τ
                                                    

  (3.30) 
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where q  is the heat flux,τ is the relaxation time of the material, and k  is the thermal 

conductivity of the material. Equation (3.30) can be combined with the transient energy 

equation which the internal heat source is omitted: 

0=∇+
∂
∂ q

t
Tcρ                                                        (3.31) 

where ρ  is the density of the material and c is the specific heat of the material. After 

combining Equation (3.30) and Equation (3.31), the following hyperbolic heat conduction 

equation can be obtained: 

02
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c ρτρ     (3.32) 

      The governing equation in terms of temperature can be written as: 

T
t

T
t
T 2
2

2

∇=
∂

∂
+

∂

∂
ατ      (3.33) 

where α  is the thermal diffusivity of the material. 

Li [66] compares the solutions of the thermal diffusion equation with those of the 

thermal wave equation for a heat transfer problem. It shows that the latter could clearly 

observe non-Fourier heat conduction behavior when the relaxation time of material 

cannot be neglected. 

     Through the expression of thermal wave model, it’s obvious that the relaxation 

time τ  is a very important parameter. When it is set as zero, the non-Fourier thermal 

wave Equation (3.33) becomes the Fourier’ law thermal diffusion equation. Various 

expressions based on different theories have been proposed for the relaxation time for 

materials. If the conduction is only due to phonon transport, the relaxation time is as 

follows [67]: 

2

3
v
ατ =       (3.34) 
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where v  is the phonon or sound velocity. For materials in which heat conduction is due 

to electronic transport only, the relaxation time is as follows [68]: 

Tnk
mk

22

3
π

τ =       (3.35) 

where m  is the effective mass, and k is Boltzmann constant here. The values of 

relaxation time derived from different formulation are different too. In my work, the 

relaxation time which is obtained from MD simulation is used in order to couple 

nanoscale and microscale heat transfer during phase changing process. 

3.2.2 Dual-Phase-Lag model 

Tzou [69] proposed a Dual-Phase-Lag model to cover the fundamental behaviors 

of diffusion, wave and phonon-electron interactions. In this model, two phase lags are 

introduced to the Fourier’s law: 

)]([ T
t
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t
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∂
∂

+ ττ
                                     

  (3.36) 

where qτ  and Tτ  are the relaxation times of the material in the heat flux and the temperature 

gradient respectively. Equation (3.36) can be combined with the transient energy Equation 

(3.31), the following hyperbolic heat conduction equation can be obtained as follows: 
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              (3.37)
 

As can be seen from Equation (3.37), the Dual-Phase-Lag model converts to the 

Fourier’s law when both the relaxation times are set to zero, and it can also convert to 

thermal wave model when Tτ  is set to zero. Adallah [70] used this model to investigate 

the thermo elastic properties of a semi-infinite medium induced by a homogeneously 

illuminating ultra short pulsed laser heating. The results showed that the Dual-Phase-Lag 

model served to be more realistic to handle practically the laser problems. 



www.manaraa.com

34 
 

 

3.3 Multiscale-based method at the microscale 

3.3.1 Based on thermal wave method 

The thermal wave model introduced in Chapter 3.2 coupledwith MD simulation is 

used to investigate one dimensional ice melting problem. The flow chart is shown in 

Figure 3.2. FEM is used to discretize the domain including both solid and liquid regions 

into small uniform elements. The ice/water melting interface will locate at the grid point 

during the simulation. At the same time, the time step is various from time to time. In 

order to couple with nanoscale, I employ some of the thermal and material properties of 

ice and water calculated from MD simulations. The important parameter τ  is also 

obtained from MD simulations and compared with experimental data. The detailed 

formulation and the method to calculate material properties are in Chapter 4.2 Microscale 

simulation of ice melting problem. 

 

Figure 3.2 Flow chart of one-way coupling simulation for ice melting 

3.3.2 Based on phase-field method 

The phase–field method coupled with MD simulation is employed to investigate 

copper crystallization process in microscale. The flow chart is shown in Figure 3.3. 
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Nuclues growth is simulated by classical phase-field method, while the interfacial 

parameters such as interfacial thickness, initial nucleus shape which are often assumed in 

current research are calculated from the MD simulations in Chapter 5.1. 

 

Figure 3.3 Flow chart of one-way coupling simulation for copper crystallization 

The classical phase–field model has following form: 

Tk
L

Tc t
f

tv ∆=+ θρ
2                                                       

(3.38) 

),(22 TFt θθεθαε θ−∆=                                                    (3.39) 

Equation (3.38) is a modified thermal diffusion equation and Equation (3.39) is 

the phase equation, where ε  is the thickness of the solid-liquid interface, and the value is 

calcuated from previous Chapter by MD simulations, ),( uF θ  is the free energy density 

function to describe the solid and liquid phases which can take on many forms, ρ  is the 

density of the material, vc  is the specific heat, T  is the temperature distribution, fL  is he 
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latent heat of fusion, k  is the thermal conductivity, and α  is the relaxation scaling.  If 

1−=θ , the material is in liquid state, and it is solid if 1+=θ . 

Therefore, the governing equations for two dimensional phase field model are: 

)1(305.0)[1( 02 θθφεθθθ
ε

θθ −+−−+∆= Sammt
                     

(3.40) 

tt S
θθθθφ

22 )1(30 −
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To solve governing Equations (3.38) and (3.39), explicit scheme is employed. Let,  

)]1(15.0)[1(),( θθφθθθφθ −+−−= CF                         (3.42) 

tS
G θθθφθ

22 )1(30),( −
=

                                                   
(3.43) 

After discretizating Equation (3.38) and (3.39), the following expressions can be 

obtained:  

),()( 2
2
,0

2
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nnn
yx FtCDDtm φθθδθ ∆++∆=                          (3.44) 

),()( 2
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nnn
yx tGDDt φθφδφ ∆−+∆=                                 (3.45) 

where ( 2
,0

2
,0 yx DD + ) is the formal notation for a second-order central discrete Laplacian. 

Therefore, if nθ  and nφ  are known at current time step n, and boundary conditions are 

known too, δθθθ +=+ nn 1  that is the phase field parameter at time n+1 and 

δφφφ +=+ nn 1  which is the temperature of nodes at time n+1 can be calculated using 

Equation (3.44) and (3.45). 
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CHAPTER 4 

ICE MELTING 

4.1 Nanoscale simulation 

4.1.1 Molecular modeling 

Water is one of the most important chemical substances in nature. It is essential 

for the survival of living creatures. It covers 71% of the Earth’s surface and has the 

second-highest specific heat capacity of any known chemical compound as well as a high 

heat of vaporization. These two unusual properties make water play a determining role in 

Earth’s climate [71]. Moreover, water is very interesting in other aspects. For example, in 

addition to water in a liquid form, water can exist in a gas form and in 13 distinct solid 

crystalline forms. 

Because of these unique features, a lot of research has been done to understand 

water properties over the last 40 years. At the early stage of computer simulation of water 

[72], [73], researchers mainly focused on observing physical phenomena at one phase, 

water liquid or ice. The first computer simulation of water was performed by Watts and 

Barker [74]. They used the Monte Carlo method to calculate water structure and 

properties at room temperature. The simulation of ice was first conducted by Rahman and 

Stillinger [75], [76]. They computed the dipole correlations and Kirkwood correlation 

factor of ice 1c and ice 1h. With the development of MD theory and computer 

techniques, research groups employed MD simulations of water/ice to study the dynamics 

of the two-phase interface over the last two decades. Karim and Haymet [77] - [80] and 

other [81] - [88] groups did much work on simulating the interface between water and ice 

1h. These simulations mainly concerned the dynamics of ice, water, or both, or intended 

to obtain the melting temperature of ice.  Moreover, the dynamics of ice melting, 

especially the melting speed, is also important to understand ice/water property.  
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However, there were not much work on this research especially computer simulations 

that could be found. 

To elucidate physical phenomena at the nanoscale via MD simulation, the key 

issue is to choose proper potential functions. Many different potential models for water 

molecules have already been proposed. B. Guillot [89] summarized those models in 

2002. He pointed out that SPC, SPC/E, TIP3P, TIP4P, and TIP5P were the most 

commonly used potential models in past years. A common criterion to choose a proper 

potential model is the ability to reproduce the properties of real water by computer 

simulations. Unfortunately, for a long time the reproduction of water properties at 

ambient condition (298K, 1bar) was the only concern when performing simulations by 

using these common potential models. However, the accuracy was not satisfying when 

the conditions were other than ambient. In order to reproduce thermodynamics and 

structural properties of water not just at ambient conditions, TIP4P-Ew, TIP4P/2005, 

TIP4P/ice, and TIP5P/E have been proposed and used in recent years. C. Vega [90] used 

these models to obtain the melting temperature with the Gibbs-Duhem methodology and 

obtained reasonable results. 

Among the study of dynamics of ice/water interface, melting speed or 

crystallization speed are some of the key parameters in the phenomenon of phase change. 

After obtaining them, the MD simulation then can be coupled with microscale and 

macroscale simulation to form a whole-scale simulation of material melting or formation. 

The purpose of this paper in performing MD is to estimate the melting speed of ice 1h 

using the common potentials of SPC/E, TIP4P, TIP5P, TIP4/ice, and TIP5P/E. The 

reason I choose melting, not freezing, is that the latter needs a very long time for 

simulation via MD simulation. The difficulty lies with the fact that hydrogen bonding 

between individual water molecules yields a disordered three dimensional hydrogen-bond 

network whose rugged and complex global potential energy surface permits a large 

number of possible network configurations. As a result, it is very challenging to 
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reproduce the freezing of ‘real’ water into a solid with a unique crystalline structure. 

Matsumoto et al. [91] have shown the nucleation of ice from only 512 water molecules 

after several months of simulation within a supercomputer.  

SPC/E, TIP4P, and TIP5P as well as TIP4/ice and TIP5P/E potential models are 

employed to conduct numerical simulations to study ice melting problem All of those 

potentials are in the form of the intermolecular pair potential, which has two 

contributions, a Lennard-Jones LJu  and an electrostatic interaction elecu . The expression 

for the potential function of water is 
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where σ and ε  are Lennard-Jones parameters, oor  is the distance between the oxygen 

sites of two water molecules, e  is the proton charge, 0ε  is the permittivity of vacuum, a  

and b  stand for the charged sites of molecules i  and j . The electrostatic interaction is 

between two charge sites on two water molecules. The potential parameters in Equation 

(4.1) for these water molecular models are listed in Table 4.1. 

Table 4.1 Potential parameters of water models 

 
 

 

 

 

 

 

Model σ (Å) ε  (kJ mol-1) qH  (e) qM (e) 0ε  

SPC/E 3.166 0.650 +0.4238 -0.8476 71 

TIP4P 3.15365 0.6480 +0.5200 -1.0400 53 

TIP5P 3.12000 0.6694 +0.2410 -0.2410 81.5 

TIP4P/ice 3.1668 0.8822 +0.5897 -1.1794 62.9 

TIP5P-E 3.097 0.7448 +0.2410 -0.2410 92 
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The meanings of each symbol in Table 4.1 can be found in [89] and [92]. σ and ε 

are Lennard-Jones parameters. qH  and qM are the charges on the hydrogen and M  

sites, respectively. ε0 is the permittivity of vacuum. 

The geometry of SPC/E is the same as that of SPC, which has three interaction 

sites corresponding to the three atoms of the water molecule, but the partial charges on 

the H and O atoms are increased slightly in the SPC/E model. It adds an average 

polarization correction to the potential energy function. Consequently, the SPC/E model 

results in better density and diffusion constants than the SPC model. 

In the TIP models, differences arise from the location of the negative charge. In 

the TIP3P model the negative charge is located on the oxygen atom. The TIP4P model 

places the negative charge on a dummy atom placed near the oxygen along the bisector of 

the H-O-H angle. This improves the electrostatic distribution around the water molecule. 

The first model to use this approach was the Bernal-Fowler [93] model published in 

1933, which may also be the earliest water model. A new version of TIP4P is TIP4P/ice 

[94]. It greatly improves the melting properties and can be used to study equilibrium 

state. The TIP5P models places the negative charge on dummy atoms representing the 

lone pairs of the oxygen atom, with a tetrahedral-like geometry. By reoptimizing the two 

Lennard-Jones parameters of the TIP5P model, the modified version of TIP5P/E is 

constructed. This model is accurate over a range of temperatures and pressures, and it 

would work better than TIP5P when using Ewald sums [95]. 

Water has many solid phases. Being one of its crystalline phases, ice 1h 

(Hexagonal ice), shown in Figure 4.1, is the form of all natural snow and ice on earth. Ice 

1h crystals form hexagonal plates and columns where the top and bottom faces are basal 

planes {0 0 0 1}, and the six equivalent side faces are called the prism faces {1 0 -1 0}. 

Secondary prism faces {1 1 -2 0} may be formed down the planes formed by the sides of 

the chair structures. Ice 1h shows anomalous reduction in thermal conductivity with 

increasing pressure like ice 1c and low-density amorphous ice, but different from most 

http://en.wikipedia.org/wiki/Bisection
http://en.wikipedia.org/wiki/Lone_pair
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crystals. The molecular structure of ice 1h has been widely used for MD simulations by 

researchers to study the properties and melting temperatures of ice. In my work, ice 1h is 

used to conduct simulations. 

 

Figure 4.1 Molecular structure of ice 1h 

4.1.2 Ice bulk 

In this thesis, two different basic configurations are used to conduct MD 

simulations. The first configuration only contains ice 1h. I want to use it to simulate the 

melting of ice bulks. The algorithm from J. A. Hayward [96] is used to generate the ice 

bulk model. Periodic boundary conditions are employed on all three directions. First, run 

a short time MD simulation to minimize energy in order to get a proper ice structure. It is 

called relaxation. During relaxation, the temperature is maintained as 30K lower than the 

melting temperature. Then, conduct NPT MD simulations under 1 atmosphere at 30K 
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higher than the melting temperature [90, 96]. The time step used in simulations is 2 fs and 

the total simulation time is 200 ps. 

I first simulate ice bulk, which contains 360 molecules and has a size of 

2.24x2.33x2.19nm3. SPC/E model is employed first. Figure 4.2 illustrates the change in 

the number of hydrogen bonds during the simulation. Some hydrogen bonds will be 

broken during ice melting. It can be clearly found that ice starting to melt around time 40 

ps and totally melt around time 70 ps. Figure 4.3 shows the evolutions of the simulated 

bulk ice at different times: 0 ps, 40 ps, 50 ps, and 70 ps, respectively. When the ice starts 

melting, a slight disruption in the lattice first occurs inside the ice crystal. Such a 

disruption then expands along the plane, which is perpendicular to the lattice as shown in 

the circle area in Figure4.3 at 50ps. After that, melting occurs melting with the plane and 

expanding rapidly over the whole system. 

 

Figure 4.2 The number of hydrogen bonds with time 
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Figure 4.3 The ice crystal at different times: 0, 40, 50 and 70 ps 

Table 4.2 lists the melting times of different water models. It can be found that the 

melting times of the simulated ice bulk for various potential models are close, except that 

the melting time is slightly longer if the model with higher melting temperature is 

employed. It should be noted that the temperature maintained in MD simulation is the 

melting temperature as described in Table 4.2 
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Table 4.2 Melting time of different water models 

Model Melting temperature (K) Melting time (ps) 

SPC/E 213 30.00 

TIP4P 230 32.00 

TIP4P/ice 269 34.00 

TIP5P-E  271 35.00 

TIP5P 273 35.00 

 

In order to check the possible size effect, I conduct simulations with various sizes 

of ice bulks via expanding the simulation model in all of three dimensions. The volume 

of ice bulk in the previous simulation is 11.40 nm3. Here the ice bulks with the following 

volumes: 22.27 nm3, 38.48 nm3, and 91.20 nm3 are studied. Since various potential 

models result in similar melting time, only SPC/E potential is used here. During the 

simulations, the melting time as well as the average melting speed is calculated in the unit 

of nm3 per picosecond.  

 Table 4.3 compares the melting times and speeds for various sizes of ice bulks. It 

can be seen that the melting time is longer for the ice bulk with larger size.  However, the 

average melting speeds are not the same for ice bulks with various sizes. The larger ice 

bulk has a higher average melting speed. The melting speed depends on how fast these 

atoms absorb thermal energies from it surrounding, i.e. the external energy bath in MD 

simulation. For an ice bulk with a larger size, the number of atoms coupled to the external 

bath is larger. Therefore, more energy is absorbed into the system per unit time. It is 

observed that more disruptions (areas in green circle in Figure 4.4) occur at the same time 

in a larger size ice bulk, so the melting happens at many locations simultaneously in the 

crystal, and, the melting speed is higher. 



www.manaraa.com

45 
 

 

Table 4.3 Melting time of different simulation boxes 

ice bulks’ volumes (nm3) Melting time (ps) Melting speed (nm3/ps) 

11.4 35 0.326 

22.27 40 0.557 

38.48 45 0.855 

91.20 50 1.824 

 

Figure 4.4 Disruptions in a large ice crystal 

4.1.3 Ice/water contacting 

The configuration which contains both ice and liquid water contacting with each 

other is then investigated. It is shown in Figure 4.5. A typical size of the simulation 

model is used as 67.116×23.250×21.920 Å3 with 1080 water molecules. Larger sample 

size up to micron meter is also available but it will cost too expensive computation time. 

Periodic boundary conditions are employed except the axial direction. Along the axial 

direction, both ends are subject to thermostats, respectively. During the simulation, the 
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right boundary of ice is maintained at a low temperature KT 2530 = , while the left 

boundary of water is maintained at a high temperature KTi 283= . After relaxation, the 

NPT MD simulations are conducted under 1 atmosphere. The time step used in the 

simulations was 2 fs. The typical time of the simulations is about 200 ps. The melting 

speed is determined by observing the movement of the ice/water interface. 

 

Figure 4.5 Configuration of ice/water contacting 

Figure 4.6 illustrates the evolution of ice melting. When the ice starts melting, a 

slight disruption in the lattice first occurs inside the ice crystal but close to the interface 

due to absorbing heat through the interface. Such a disruption subsequently expands 

along a plane that is perpendicular to the lattice. Consequently, melting begins at such a 

plane and expands rapidly from left to right. During ice melting, the ice/water interface 

can be identified, although it is not a sharp one. Therefore, the ice melting speeds can be 

calculated at various times, as shown in Figure 4.7. It can be seen that the melting speed 

is very fast at the beginning and then decreases with time. Based on the discrete data 

obtained from the simulation, the melting speed of the ice/water interface can be 

predicted with the following formula, 

57.3
−= e

t
v       (4.2) 
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a. Interface at time 15ps 

 

b. Interface at time 30ps 

 

c. Interface at time 40ps 

Figure 4.6 Evolution of ice/water interface  
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Figure 4.7 Ice melting speed 

Other potential models are also employed to conduct similar MD simulation. It is 

found that the melting speed is independent of the potential models as shown in Figure 

4.8.Figure 4.8 also shows that the melting speed decreases with time. It is because that 

the rate of atoms around interface absorbing energy reduces when the ice/water interface 

moves from one end to another end. 

 

Figure 4.8 Melting speeds of different potential models 
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To study the size effect on the melting speed of ice/water interface, I only 

increase the length of the simulated model since the sides are subject to a periodic 

boundary condition. Because moving speeds of water/ice interface are very similar for 

different potentials, the TIP5P model is mainly employed here. First, keep the same 

temperature gradient as the previous simulation, 13.5 K per nanometer. Therefore, the 

temperature to which the left end of ice is subject will be decreased based on the length 

elongated. Figure 4.9 illustrates that there is no size effect on melting speed of ice/water 

interface if the temperature gradient remains the same. 

 

Figure 4.9 Melting speeds of different simulaiton box lengths of TIP5P 

The effect of temperature gradient on the melting speed of ice/water interface is 

also studied. The simulated model is the same as the initial one with a length of 6.71 nm. 

The temperatures of the thermostats on the two ends of the simulated model are changed 

so that the model is subject to various temperature gradients as follows: 13.5 K, 27.0 K, 

40.5 K and 54.0 K per nanometer.  Figure 4.10 illustrates that the melting speed increases 
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as the temperature gradient increases. Obviously, high temperature gradient will 

accelerate the rate of atom absorbing energy. Consequently, the constant value in 

Equation (4.2) is related to the temperature gradient. 

 

Figure 4.10 Melting speed of TIP5P with different temperature gradient 

4.2 Microscale simulation 

A one-dimensional ice melting problem shown in Figure 4.11 at the microscale is 

investigated in my work. Boundary conditions are iTtT =),0(  and 0),( TtLT = , where iT  

is higher than the melting temperature mT , and 0T  is lower than mT . 

At the microscale, the melting interface is denoted as )(ty , which is a function of 

time t , and the temperature on the interface is always the melting temperature, mT . On 

the melting interface, a heat transition from the solid state to the liquid state takes place. 

It requires a release of latent heat of transformation described via the following Equation 

(4.3): 
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where the subscript l  refers to the liquid region, which already melted, and the subscript 

s  refers to the solid region, which is still ice. sk  and lk  are thermal conductivities of ice 

and water, sρ  is the density of ice, and λ  is the latent heat of phase change.  

 

Figure 4.11 Illustration of one dimensional ice melting problem 

In order to calculate the melting speed via Equation (4.3), the temperature 

gradients or the temperature profiles in the solid and liquid regions should be obtained. 

Fourier law, which is used to solve heat conduction problems at the macroscale, has been 

shown to be improper at the microscale. A physical-based thermal wave model (3.33) 

which is already explained in Chapter 3.3 is employed for the transient behavior of 

temperature at the microscale. In my work, only one dimension problem is considered, so 

Equation (3.33) has the following form: 
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where τ  is the relaxation time and α  is the thermal diffusivity. It should be noted that 

the above equation will be applied on both liquid and solid regions. 

For a one-dimensional ice melting problem, the entire domain, including both 

liquid and solid regions, is discretized into small uniform elements. The spacewise 

discretization of Equation (4.4), subjected to appropriate boundary conditions, can be 

accomplished by using the Galerkin finite element method [97]. The temperature field in 

one element can be approximated by nodal temperatures via the shape function iN : 

)()()(),(
1

tTxNttxT i

n

i
i

e
e

∑
=

== TN T     (4.5) 

where )(tT is the column vector of nodal temperatures, and en  is the number of nodes 

per element. Two-node linear elements are used in this thesis so that en  is equal to 2.  

Substituting Equation (4.5) into the weak form of governing Equation (4.4) and 

integrating, the finite element equations can be written in a matrix form as: 

0=−+
•••

TTT KCM      (4.6) 

and 

dxNNM jiij ∫=τ , ∫= dxNNC jiij , dx
x

N
x

NK ji
ij ∫ ∂

∂

∂
∂

= )(α   (4.7) 

In my work, uniform element length x∆ is employed and the melting interface is 

located at the grid point during the simulation. Consequently, the time step will be 

various from time to time. When updating the solution from time nt  to time 1+nt , nT  and 
ny  are known at time nt . In addition, at time nnn ttt ∆+=+1 , yyy nn ∆+=+1  is also 

known. It should be noted that xy ∆=∆ .  

To update the solution at time 1+nt , the nodal temperatures 1+nT  and the time step 
nt∆  need to be calculated. The nodal temperatures can be updated from Equation (4.6), 

and the time step nt∆  will be obtained from Equation (4.3) as follows  
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In my work, an iterative method is used to solve the systems of Equations (4.6) 

and (4.8) to obtain the nodal temperatures 1+nT  and the time step, nt∆ , at time 1+nt . To 

start iterations at each time step, let 10, −∆=∆ nn tt .The following steps are conducted in 

the rth (r=1, 2, 3 … ) iteration to update the solution: 

Step 1, substituting 1, −∆ rnt  into Equation (4.6) to solve temperature distribution
rn ,1+T . 

Step 2, calculating rnt ,∆  through Equation (4.8) by using rn ,1+T  obtained from 

step 1.  

Step 3, examining ε<
∆

∆−∆ −

rn

rnrn

t
tt

,

1,,

, where ε  is the given tolerance to check if 

the iteration is converged. If it is converged, rnn tt ,∆=∆  and nodal temperatures 1+nT  are 
obtained at time 1+nt . Consequently, the ice melting speed can be calculated via 

nn tyv ∆∆=+1 . 

In microscale simulations, some of the thermal and material properties of ice and 

water are obtained from the nanoscale via MD simulations.  

The thermal diffusivity α  can be calculated through the thermal conductivity k  

divided by the product of the density and the specific heat c . The thermal conductivity k  

is the property of a material that indicates its ability to conduct heat [98]: 

)/(2 dxdTtA
q

k x=       (4.9) 

where xq  is the total heat flux on x direction, dxdT /  is the resultant temperature 

gradient in this direction, A is the surface area perpendicular to the x-axis, and t  is the 

total simulation time. By using Equation (4.9), a thermal conductivity can be calculated 

from MD simulations by imposing a prescribed heat flux on the system and then 
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determining the resulting steady-state temperature gradient in the direction parallel to the 

heat flux. 

The specific heat is the measure of the heat energy required to increase the 

temperature of the material. It can be obtained as follows [99]: 

1

22

22
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−><−><
−=

TNkn
KKnRc

B

     (4.10) 

where R  is the gas constant, K  is the total kinetic energy of the system, n  is the degree 

of freedom per atom, N  is the total number of atoms, T  is the temperature of the system, 

and Bk  is Boltzmann constant. With MD simulations, specific heat can be calculated by a 

given energy fluctuation and the resulting equilibrium temperature. 

Latent heat refers to the amount of energy released or absorbed by material during 

the phase change process. In material melting, the latent heat is equal to the difference in 

the enthalpy between the solid and liquid phases. The enthalpy is defined as the 

summation of internal energy U∆  and the product of pressure and volume change Vp∆ . 

Therefore, the latent heat λ  can be calculated from MD simulation of melting of an ice 

bulk via  

VpU ∆+∆=λ       (4.11) 

The relaxation time in the thermal wave equation represents the time required for 

the perturbed system to return into the equilibrium state. It can be calculated from a heat 

flux fluctuation [100]: 

2

2

4L
tk∆

=τ        (4.12) 

where k  is the thermal conductivity; t∆  is the real-time difference between the two 

peaks in the temperature response curve via MD simulations; and L  is the thickness of 

the simulated crystal. After applying a heat flux on a given system, and measuring the 

time difference t∆ , the relaxation time can be calculated. 
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4.3 Results and discussions 

Material and thermal properties are calculated from MD simulations as follows: 

)/(556.0 mKWkl = , 3/1000 mkgl =ρ , and )/(226.4 KkgkJcl ⋅=  for water; 

)/(22.2 mKWks = , 3/920 mkgs =ρ , and )/(915.1 KkgkJcs ⋅=  for ice. Therefore, the 

thermal diffusivities are smel /732.1 2−=α  and smes /626.1 2−=α  for water and ice, 

respectively. In addition, latent heat is calculated as kgkJ /330=λ .  Temperature effects 

on those properties are neglected. 

I also calculated the relaxation time of ice at various temperatures via MD 

simulations. The simulated results are compared well with experimental measurements 

by Petrenko and Whitworth [101] as shown in Figure 4.12. Since the relaxation time is a 

function of temperature, the relaxation time I used to calculate the relaxation matrix M  in 

Equation (8) is corresponding to the updated temperature at each node.  The calculated 

relaxation time of water is very small and equals 2 ps. 

 

Figure 4.12 Relaxation time from MD simulation compared with experimental results 

By using the above material and thermal properties, the melting process of a finite 

slab of ice with a thickness of mL µ10= is analyzed. It is a typical size in microscale 
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simulation. The sample size up to millimeter is also available but will cost longer 

computation time. 1000 linear one-dimensional elements are used here. Boundary 

conditions are KTi 283= and KT 2530 = . Based on the simulated data, the ice melting 

speed at the microscale can be formulated as 

59.5
−= e

t
v        (4.13) 

The melting speed of ice at the macroscale can be obtained from the analytical 

solution of an ideal one-dimensional problem [102, 103]. In this previous research, a 

solid at a uniform temperature 0T  that is lower than the melting temperature mT  is 

confined to a semi-infinite domain 0>x . The temperature of iT , higher than mT , is 

applied and maintained at the boundary surface, i.e., 0=x . As a result, the melting starts 

at the surface 0=x , and then the liquid/solid interface moves along the x direction. By 

solving the thermal diffusion equation and the latent heat equation, one can obtain the 

melting interface position as follows: 

2/1)(2)( tty lαβ=       (4.14)  

where β  is a constant and is determined by solid and liquid temperature through:  
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The boundary conditions are similar to those at the micro- and nanoscales: 

KTi 283= and KT 2530 = . Consequently, the ice melting speed at the macroscale can be 

derived as 

51.13
−= e

t
v        (4.16) 

Ice melting speeds at the macroscale, microscale, and nanoscale are compared in 

Figure 4.13. It should be noted that not only various length scales but also the 

corresponding time scales are considered. In addition, the dot lines represent the 

predicted ice melting speeds at the nano and micro length scales with larger time scales. 
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Figure 4.13 clearly shows that melting speed at the nano length/time scale is much faster 

than those at the microscale and macroscale.  Specifically, the ice melting speed is 1.2 

m/s at 1 nanosecond, while it is 5.9×10-2 m/s at 1 microsecond and 13.1×10-5 m/sat 1 

second.  

 

Figure 4.13 Ice melting speeds at various scales 

It should also be noted that ice melting speeds decrease with time evolution as 

shown in Figure 4.13. If only considering various length scales, the ice melting speed at 

the nano length scale decreases with time. At the micro time scale, it is slower than the 

melting speed at the micro length scale. Similarly, at the macro time scale, the melting 

speeds at the micro and nano length scales are slower than the one at the macro length 

scale. For instance, at 1 second, the ice melting speed is 3.7×10-5 m/s at the nano length 

scale, 5.7×10-5 m/sat the micro length scale and 13.1×10-5 m/s at the macro length scale.  
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The results illustrate that the ice melting speed is scale dependent. The macroscale 

analytical solution is obtained based on heat transfer theory, which only describes 

macroscopic behaviors averaged over many grains with a long time interval. It ignores 

many characteristics of material at the microscale and nanoscale such as relaxation, 

electron-electron, and phonon-phonon scattering in material [69]. In addition, at the 

macroscale, the melting front is assumed to be a sharp interface, which is a mushy zone 

including both water and ice at the micro- or nanoscales. Consequently, ice melting at the 

macroscale occurs at multiple locations in the mushy zone at the micro- and nanoscales. 

The results of my simulations indicate that the phase change mechanism is scale 

dependant. In order to understand how the material phase transition, especially for 

nanomaterial formation, simulations and analysis in nanoscale and microscale must be 

conducted. 

4.4 Conclusions 

In my work for ice melting, MD simulations were conducted to study melting 

phenomena of ice at the nanoscale. The melting of ice bulks as well as the speed of 

ice/water interface during ice melting was studied. Since a number of potential functions 

of water molecules were proposed in previous research, the following common potential 

functions were considered in this thesis: SPC/E, TIP4P, TIP5P, TIP4/ice, and TIP5P-E. It 

was found that various potential functions result in similar phenomena. Size effects were 

also studied on ice melting. It was found that the melting time is longer for an ice bulk 

with larger size but that the average melting speed is also size dependent. There is no size 

effect on the speed of ice/water interface during ice melting if the same temperature 

gradient is applied. Further research showed that such a melting speed depends on the 

temperature gradient. 

In addition, the thermal wave model was used instead of the classical Fourier’s 

law so that microscopic behavior of heat transfer can be accurately described in studying 
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ice melting at the micro length and time scale. The ice melting speeds obtained at the 

nano- and microscales were then compared with the analytical solution, which was 

derived at the macro length and time scale. It is found that ice melting speeds are 

different at various length and time scales. At the nano length and time scale, ice melts 

faster than at the micro and macro length and time scales. If only the length scale is 

considered, ice melts at the macroscale faster than at the nano- and microscales. It is 

concluded that ice melting speed is dependent not only on length scales but also on time 

scales. I believe that material phase change mechanisms are also scale dependent and 

merit further research.  
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CHAPTER 5 

COPPER CRYSTALLIZATION 

5.1 Nanoscale simulation 

5.1.1 EAM potentials 

The embedded-atom method (EAM) potential has been widely used in MD 

simulation of metals. It was first suggested by Daw and Baskes [104,105] as a method to 

overcome the main problem caused by using two-body potentials. Zheng et al [106] used 

this potential to study homogeneous nucleation and growth of melting in copper. They 

validated this potential using the equilibrium melting point obtained with the solid-liquid 

coexistence method and the superheating-supercooling hysteresis method. Ouyang 

Yifang and Zhang Bangwei et al [107,108] proposed an extended EAM potential by 

adding a modified energy term to the total energy expression of the EAM. This helps to 

account for the difference between the actual total energy of a system of atoms and the 

one calculated from the original EAM using a linear superposition of spherically atomic 

electron densities. Another modified EAM was formulated by Baskes [109,110]. It 

consists of a generalization of the EAM potentials by including angular terms.  

The EAM potential is used here for MD simulations of copper crystallization. 

Based on the Density Functional Theory (DFT) or the Tight Binding (TB), the 

following form for the total energy can be written: 

)()( h
i

N

i
ij

N

ij
tot FE ρφ ∑∑ += ijr ,     )( ijrat

ij
j

h
i P∑=ρ                             (5.1) 

The total energy in EAM potential consists of two parts, a pair potential term 

)(rφ  representing the electrostatic core-core repulsion, and a cohesive term )(ρF  

representing the energy the ion core gets when it is "embedded" in the "Electron Sea". 

This embedding energy is a function of the local electron density, which in turn is 
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constructed as a superposition of contributions from neighboring atoms. Such an electron 

transfer is specified by the function )(rP . 

The total energy function depends on the type of the embedded atom ( )(ρiF ), or 

on the types i  and j  of the two atoms involved ( )(rijP , )(rijφ ). The corresponding 

tabulated functions can be given in either of two formats. Note that )(rijP  and )(rijφ  have 

to be tabulated equidistant in 2r . The adopted tabulated EAM potential in my work was 

developed by Y. Mishin et al [111]. 

5.1.2 Central symmetry order parameter 

The central symmetry order parameter is very useful for visualizing planar faults 

in FCC and BCC crystals [112]. Consequently, it is used to characterize the degree of 

inversion symmetry breaking in each atom’s local environment that is to distinguish 

whether this atom is in solid state or liquid state. I briefly discuss the method here for 

how to calculate central symmetry order parameter for each atom. 

An integer constant, M , is defined to be the maximum number of neighbors for 

the computation of the central symmetry order parameter of each atom. For an example 

of copper with FCC lattice structure, M  is equal to 12.  

For each atom Ni ......1∈ , where N is the total number of atoms 

),min(~
ii NMm ≡                                                               (5.2) 

0~ =im  and the central symmetry parameter 0=ic  because an isolated atom 

should have perfect inversion symmetry, and 1,1~ == ii cm  because a coordination -1 

atom has no inversion image to compare with. Therefore, its inversion symmetry is the 

most broken. For 2~ ≥im , 

2
2

~
×







≡ i
i

m
m                                                                    (5.3) 

With the following steps the central symmetry order parameter for each atom can 

be calculated: 

http://www.itap.physik.uni-stuttgart.de/~imd/userguide/potformat.html
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Step 1: calculate the distance || jd for atom i to all other atoms. 

Step 2: pick up the smallest im , and set || jd  in ascending order. Take the 

smallest 1d and the corresponding atom 1d closest neighbor of atom i . Then search among 

the other 1−im  neighboring atoms of atom i  to find one, i.e. atom j , which can 

minimize 

2
1 ||~

jj ddD +≡    , let '

~,~arg 1
...2

' min jj
mj

DDDj
i

≡
=

=                                     (5.4) 

Step 3: take atoms 1d  and j  out of M atoms (here, M is 12 for copper). In 

remaining atoms, pick up one atom which is closest to atom i , and repeat step2 until all 

other atoms are empty. 

Step 4: calculate the central symmetry parameter for atom i  
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                                                                        (5.5) 

According to the Lindemann/Gilvarry rule [113], a crystal melts when the atomic 

vibrational amplitudes reach about ~12% of the nearest neighbor distance. Therefore, for 

a perfect crystal, the central symmetry parameter ic should be less than 0.01 even at a 

finite temperature. In my work, the threshold value of the central symmetry parameter is 

set as 0.01. In other words, the atom is solid if its central symmetry parameter is less than 

0.01, while the atom is liquid if its central symmetry parameter is larger than 0.01. 

5.1.3 The MFPT method 

The mean first passage time method (MFPT method), which was previously 

proposed by Wedekind [114, 115] and Bartell and Wu [116], is used to evaluate the 

critical nucleus size *n , and the steady-state nucleation (barrier-crossing) rate J . 

In the MFPT ),;( 0 baxτ  is defined as the average elapsed time until the system 

beginning with state x0 leaves a prescribed domain ],[ ba for the first time. In addition, 

the following expression can be obtained: 
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)])((1[
2

)( * cxberfb J −+=
ττ                                                          (5.6) 

where JJ /1=τ is the inverse of the (steady-state) transition rate, and *x represents a 

transition state, 
kT
xUc

2
|)(| *"

=  is the local curvature at the top of the barrier, where 

)(xU  is the excess Gibbs free energy, k  is the Boltzmann constant, and T  is the 
temperature. 

In the case of nucleation during crystallization, b  corresponds to the size of the 

largest solid nucleus ( maxn ), ** nx = , and )/(1 VJ Jτ= , where V  denotes volume, 

)()( maxnb ττ =  can be obtained statistically from N independent runs. For each run, 

)(max tn  is calculated from the trajectory via cluster analysis. 

)(1)( max
1

max nt
N

n
N

i
i∑

=

=τ                                                                  (5.7) 

where )( maxnti  denotes the time when the size of the largest nucleus reaches or exceeds a 

given value maxn  for the first time in the ith run. Then, n*, the steady-state nucleation 

(barrier-crossing) rate J  can be obtained by fitting to )()( maxnb ττ =  with Equation (5.6). 

5.1.4 Simulation details 

All MD simulations for copper crystallization are conducted with a constant 

pressure and temperature ensemble, i.e., NPT, with three-dimensional periodic boundary 

conditions. Temperature is regulated with the Hoover thermostat and the isotropic 

pressure. 

The initial configuration used for copper crystallization is shown in Figure 5.1. It 

only contains liquid atoms. Figure 5.1 (a) shows all the atoms, and Figure 5.1 (b) only 

shows the solid atoms. Such an initial configuration is obtained from melting process as 

shown in Figure 5.2, a perfect face-centered-cubic FCC solid copper at room temperature 

subjected to incremental heating, and turns into liquid regime at ambient pressure to 

1800K. Then, the temperature is dropped off to the required one, i.e. 850K as shown in 

Figure 5.1. The temperature increment or decrement is50K.The time step employed in 
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MD simulations is 1 fs. At each increment/decrement temperature, the run duration 

includes 50 000 steps or more for the system to reach the equilibrium state. Three typical 

system sizes which contain 4000, 32000 and 256000 atoms are attempted to examine the 

size effect. 

 

Figure 5.1 (a) Initial liquid configuration  

 

Figure 5.1 (b) Initial liquid configuration (central symmetry coloring) 
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Figure 5.2 Initial solid configuration (4000 atoms at room temperature) 

5.1.5 Atomic crystallization process: Nucleation and 

Growth 

In order to get homogenous crystallization, the supercooling and melting 

temperatures are first obtained. With 50K increment heating from room temperature 

300K to 1800K and 50K decrement cooling back to 300K, the temperature and volume 

hysteresis is setup. Figure 5.3 shows the temperature and volume hysteresis loop for a 

32000 atoms system. 

−T  indicates the limit of supercooling, and +T indicates the limit of superheating. 

From Figure 5.3, KT 10870 ±=− , KT 101620±=+ . These two values are significantly 

close to the supercooling and superheating temperature limits obtained by Zheng et.al. 

[91]. After obtaining −T and +T , the melting temperature of copper is easily calculated by 

below equation: 

+−+ ++= TTTTTm _                                                                 (5.8) 
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Figure 5.3 Temperature-volume hysteresis loop (32000 atoms) 

Therefore, the melting temperature of copper is calculated as KTm 201303±= , 

which is close to the experimental data KTm 1358= . In this thesis, the calculated values 

of supercooling and melting temperature of copper are used to do simulations.  

The main purpose of MD simulation of copper crystallization is to investigate the 

nucleus nucleation and growth during crystallization. Therefore, the atomic coordinates 

are recorded every picosecond from the MD simulation for each case. Then the central 

symmetry parameter for each atom at a certain supercooling temperature is calculated, 

and solid atoms from liquid atoms are distinguished by the threshold of 0.01.  

Figure 5.4 shows the evolution of copper crystallization in the case with 4000 

atoms under 850K. From Figure 5.3, it can be found that crystallization starts around 

20ps. At that time, a few nuclei randomly occur. However, most of them are close to the 

boundary. Those nuclei grow faster than others. According to the supercooling limit 

value KT 10870 ±=− , it indicates that crystallization at 850K by using 850K initial 

configuration is heterogeneous.  
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Figure 5.4 Configurations of solid atoms during crystallization at 850K at 20, 30, 
40 and 50ps (The system size is 4000atoms) 

Figure 5.5 shows the evolution of solid atoms crystallization in the case with 4000 

atoms under 900K by using initial configuration at 900K. From Figure 5.5, it can be 

found that crystallization starts around 2.76ns. It’s very obvious that it takes much longer 

time to observe nucleation than the case at lower temperature, 850K in Figure 5.4. In 

addition, the growth rate of nuclei is also much slower than the case at the supercooling 

temperature of 850K. It indicates that crystallization at 900K is homogeneous, but it is 

hard to do simulations under this temperature because it need too much time. 
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Figure 5.5 Configurations of solid atoms during crystallization at 900K at 2.76, 
2.77, 2.78 and 2.79 ns (The system size is 4000atoms) 

The configuration with 32000 atoms is also investigated. Figure 5.6 shows the 

evolution of copper crystallization at850K by using initial configuration at 850K. The 

similar nucleation and nuclei growth to 4000 atoms at 850K is observed. The nucleation 

starts around 20ps and grows very fast. Nuclei randomly occur in the simulation box 

close to the boundary, and the nucleus which is closer to the boundary is growing faster 

than the nucleus which is far away from the boundary. 
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Figure 5.6 Configurations of solid atoms during crystallization at 850K at 20, 30, 
40 and 50ps (The system size is 32000atoms) 

The configuration with 256000 atoms is investigated to check size effect. Figure 

5.7 shows the evolution of copper crystallization at850K. The similar nucleation and 

nuclei growth to 4000 atoms and 32000 atoms at 850K is observed too.  
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Figure 5.7 Configurations of solid atoms during crystallization at 850K at 20, 30, 
40 and 50ps (The system size is 256000atoms) 

Through the simulations at different temperatures, it is found that if the 

supercooling temperature is largely below the supercooling temperature limit 870K, 

heterogeneous nucleation will be observed rather than homogeneous nucleation, because 

no matter how the initial velocities of atoms given at the beginning, the nucleation always 

occur at the close area as well as close to the boundary and grows very fast. 

Crystallization at higher temperature, the homogeneous nucleation is observed. If 

different initial velocities for atoms are given, the nuclei will occur at totally different 

place which depends on the velocity values. Figure 5.8and Figure 5.9 show the evolution 

of solid atoms crystallization which has 32000 atoms under 850Kwith same initial 
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configuration at 875K but with different initial velocities (Random seed is used here to 

control initial velocity). For this case, Nucleation starts everywhere and may not be close 

to the boundary. 

 

Figure 5.8 Configurations of solid atoms during crystallization at 40, 50, 60 and 
70ps (The system size is 32000atoms with random seed at 99510) 
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Figure 5.9 Configurations of solid atoms during crystallization at 40, 50, 60 and 
70ps (The system size is 32000atoms with random seed at 493804) 

Figure 5.10 shows the evolution of global central symmetry parameter as a 

function of time (32000 atoms crystallization under 850K by using initial configurations 

at 875K). Since this case is homogeneous nucleation, process of crystallization is 

corresponding to the configuration evolutions shown in Figure 5.7. From this graph, the 

crystallization process can be identified into several regimes. The first regime a  is from 

the beginning to time around 20ps, and the second b  and following regimes c , d , e  and 

f  are from time 20 to 30ps, 30 to 50ps, 50 to 100ps and thereafter respectively. 
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Figure 5.10 Global central symmetry parameter evolution during crystallization at 
850K. The system size is 32000atoms. 

The total number of solid atoms increases modestly in regime a  and b , 

noticeably in regime c , and sharply increases in regime d . The trend to slow down is in 

regime f  which means most atoms already become solid. In regime a , the nucleation 

rate is almost zero. The linear growth of the number of solid atoms occurs in regime b  

and c , followed by rapidly growth in regime d  and then finally slows down in regime f

.  

In regime a , the critical nucleus has a 50% chance to transform to solid, and it 

also has 50% chance of reverse transition into liquid because homogeneous nucleation, 

which results in pronounced random fluctuation in the occurring location of the nucleus 

and nearly no growth in its size. In regime b, the critical nucleus is more easily transited 

into a super critical nucleus with more stabilized location because the possibility of its 

reverse transition is reduced considerably. After this period, the growth of such nucleus is 

stable in regime c. Fast increase in nucleation rate in both supercritical and subcritical 
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nucleus makes the rapid growth in regime d. The slowdown in regime f is due to 

depletion of parent phase, nuclei absorption, and impingement of growing supercritical 

nuclei. 

5.1.6 Critical nucleation: the MFPT method 

It is very difficult to directly obtain a rigorously defined critical nucleus with size 

n* and nucleation rate Jin only one individual simulation, because there is a 50% chance 

of reverse transition for such nuclei by definition. Therefore, the MFPT technique 

recently proposed by Wedekind [114] which appears appropriate for its simplicity and yet 

rigorousness is used. For the MFPT method, it is only necessary to consider the size of 

the largest nucleus maxn . 100 independent runs on a system of 32000 atoms at 850K are 

conducted. Each run starts with a different random number seed for initial velocities of 

atoms, but with the same initial configuration which is obtained at 850K by using the 

same initial configuration at 875K and all other same parameters like pressure and 

temperature controls.  As expected, the results of all these runs are similar to each other 

but different in details including the location of nucleation and growth during 

crystallization shown in Figure 5.11. 

τ is defined as the instant in the MFPT method when the size of the largest 

nucleus reaches or exceeds a given size maxn  for the first time, and its value is calculated 

by averaging over 100runs. Fitting to with Equation (5.6), the critical nucleus is 24* =n , 

and 3138108.0/1 −−×== msVJ solJτ .  
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Figure 5.11 Evolutions of the size of the largest nucleus maxn during 
crystallization at 850K for a 100 independent runs with system size of 32000atoms. 

5.1.7 Solid-liquid interface: thickness 

Through analyzing the solid-liquid interface profile for the curved interfaces, the 

characteristic length scale δ (interface thickness) for the interface can be obtained.  

First finding the center of mass of a certain nucleus during crystallization process, 

then doing spherical average centered at the center of mass (COM), i.e., starting from the 

COM, draw spheres of radius of r . Calculate the average central symmetry parameter 

within each spherical shell with a thickness of r∆ , yielding a profile )(rc . The profile of 

the central symmetry parameter (denoted as c) can be described by a sigmoidal function: 
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where, r denotes the radius, 0r  is the radius of COM, and w  represents a characteristic 

length scale of the interface. Then 10%-90% width of the interface is thus w394.4 . 
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Figure 5.12 shows the cluster which contains 31 solid atoms during 

crystallization. It is used to calculate interface thickness here. Figure 5.13 shows the 

central symmetry parameter profile at the solid-liquid interface for the cluster. In this 

case, the solid-liquid interface between the cluster and its surrounding liquid atoms

nmw 23.0= , and thus the corresponding interface thickness δ  is 1.0nm. 

 

Figure 5.12 A cluster with 31 atoms during crystallization at 850K 

 

Figure 5.13 The radial central symmetry parameter profile at the solid-liquid 
interface of a cluster with 31 atoms 
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Another cluster which contains 39 solid atoms during crystallization of the system 

totally having 32000 atoms at 850K is also investigated, shown in Figure 5.14. Figure 

5.15 shows the radial central symmetry parameter profile at the solid-liquid interface. By 

curve fitting, it can be found the interface thickness δ  is 1.03nm which is very close to 

the result of 31 atoms cluster. 

 

Figure 5.14 A cluster with 39 atoms during crystallization at 850K 

 

Figure 5.15 The radial central symmetry parameter profile at the solid-liquid 
interface of a cluster with 39 atoms 
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In order to check size effects, the order parameter profile of a cluster with 403 

atoms in the 256000atoms crystallization process at 850K at 30ps is investigated. By 

curve fitting, it is found that the interface thickness δ  is 1.0 nm which is very close to the 

result of 31 and 39 atoms clusters of system size of 32000 atoms. 

5.2 Microscale simulation 

 

Figure 5.16 Phase-field simulation of nucleus growth comparing with MD 
simulation. The nuclues is chosen from a system size of 4000 atoms at 850K 

The initial configuration is obtained from MD simulation of a 4000 atoms at 

850K supercooling. It is the largest cluster at 30ps. Since it is a three dimensional cluster, 

first map it into two-dimensional configuration, and then set phase field parameter of all 

the nodes in this cluster to 1. It means all nodes in the initial configuration is already in 

solid state (The black boundary in Figure 5.16 indicates the initial configuration from 
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MD simulation). As shown in Figure 5.16, it can be observed that the nucleus grows 

slower by phase-field method than directly MD simulation at 50ps. Since the simulation 

time scale is at the nanoscale in picoseconds, it can be expected that the rough shape of 

the MD nucleus will smoothens and growing into big cluster by Phase-field method. And 

in contrast, MD simulation always exhibit different shapes because nucleus occur 

everywhere in the simulation box, whereas the Phase-field simulation average out the 

rough structures, independently of the randomly distributed initial positions of atoms. 

Under non-isothermal conditions, the cluster by Phase-field method develops side 

branches and evolves in a dentritic structure. 

 

Figure 5.17 Phase-field simulation of nucleus growth comparing with MD 
simulation. The nuclues is chosen from a system size of 32000 atoms at 850K 

Another configuration which initial nucleus coming from the MD simulation of 

system size of 32000 atoms at 850K is investigated, shown in Figure 5.17, the similar 
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result is observed. The phase-field method averages the roughness of the initial structure 

and leads into same growth in each direction of the initial nucleus at the early stage of 

nucleation and crystallization which is totally different from MD simulations. 

5.3 Results and discussions 

The Gibbs free energy difference per unit volume between solid and liquid can be 

calculated: 

mmmv TTTHG /)( −∆=∆                                                    (5.10) 

where mH∆  is the enthalpy of fusion and it equals to 12.1kJ/mol for copper. 

Therefore, the excess Gibbs free energy due to the nucleation can be calculated as 

follow: 

r

rGrG v δ
γππ
21

4
3
4 23

+
+∆−=∆                                            (5.11) 

where r  is the nucleus radius, γ  is the solid-liquid interfacial energy,δ  is the 

characteristic length scale for the interface. Using the values obtained from MD 

simulation at 850K, JGv
310*188.4−=∆ , JG 2110*25.1 −=∆  are calculated using the 

assumption that 0=δ or r<<δ in classical nucleation theory (CNT) [106].  

In CNT, the nucleation rate can be calculated as: 

kT
G

eJJ
∆

−
= *0                                                                    (5.12) 

where 0J  is the nucleation prefactor,  k  is Boltzmann constant. A widely used value of

0J  for metals [117] is 314010 −− ms . Using the values above, 314010*9.0 −−= msJ . It is 2 

orders of magnitude larger than the nucleation rate obtained from the MFPT method. 

There are many debates for nucleation rate in research works [114], it may differ by 6-10 

orders of magnitude depending on the methodology or assumptions adopted, and the 

prefactor 0J  is a main uncertainty because its’ calculation from classical nucleation 

theory depends on several unknown parameters. Therefore, the MFPT method may help 
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to solve the controversies for copper crystallization or other materials nucleation during 

phase change. 

The critical nucleation size is another subject under debate. From my simulations, 

it is about 24 atoms by MFPT method. These atoms are “strict” solid atoms defined by 

central symmetry parameter in which intermediate quasi solid atoms are not accounted. 

While it was proposed 12* =n for simple FCC structure metals by Wang [118] based on a 

vacancy-squash model without considering kinetics. This value may represent a lower 

limit of the critical nucleation size. In classical nucleation theory, the critical nucleation 

size is predicted as 140 atoms when considering the finite width of the solid-liquid 

interface. From this aspect, one can see that the MFPT method is a rigorous technique to 

reduce the critical nucleation size statistically. Remember the threshold to distinguish 

solid and liquid atom is set to 0.01 in my simulations, the critical nucleation size may also 

change if changing the central symmetry threshold. 

5.4 Conclusions 

In my work for copper crystallization MD simulations were conducted to study 

copper nucleation at the nanoscale. EAM potential was employed in simulations. The 

supercooling, superheating and the melting temperature were obtained. The detailed 

nucleation and nucleus growth at different temperatures were simulated and revealed by 

using central symmetry order parameter. It was found that if the supercooling 

temperature was largely below the supercooling temperature limit 870K, heterogeneous 

nucleation would be observed rather than homogeneous nucleation, the nucleation always 

occurred at the close area as well as close to the boundary and grows very fast. 

Crystallization at higher temperature, the homogeneous nucleation would be observed. If 

given different initial velocities for atoms, the nuclei would occur at totally different 

place which depends on the velocity values. 100 runs of simulations with different initial 

velocities were done to calculate the critical nucleus size and the steady-state nucleation 
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rate by the MFPT method, and compared it with the classical nucleation theory. The solid 

liquid interface thickness δ was calculated. For two different nuclei, the thickness values 

were similar about 1.0 nm. System with 4000, 32000 and 256000 atoms were examined 

to check size effect, and the size effect can be neglected in the early stages of nucleation 

during crystallization.  

The Phase-field method was used to simulate copper crystallization at the 

microscale. The initial configuration was obtained from MD simulation of a 4000 atoms 

at 850K supercooling. After mapping the largest nucleus into two dimensional 

configuration, phase field parameter of all the nodes in this nucleus were set as 1. By 

phase-field method the nucleus grows slower than directly MD simulation. The reason is 

that phase-field simulation averages out the rough structures, independently of the 

randomly distributed initial positions of atoms, while MD simulation always exhibits 

different shapes because nucleus occur everywhere in the simulation box. And one can 

expect that the cluster will develop side branches and evolves in a dentritic structure by 

phase-field method. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

6.1 Summary and conclusions 

6.1.1 Studies of ice melting 

MD simulations were conducted to study ice melting at the nanoscale. Melting of 

ice bulks as well as the speed of ice/water interface during ice melting was studied. The 

common water potentials, including SPC/E, TIP4P, TIP5P, TIP4/ice, and TIP5P-E were 

employed. It is found that various potential functions result in similar phenomena. The 

size effects on ice melting were checked. It is found that the melting time is longer for an 

ice bulk with larger size, and the average melting speed is size dependent. There is no 

size effect on the speed of ice/water interface during ice melting if the same temperature 

gradient is applied. Further research showed that such a melting speed depends on the 

temperature gradient. 

For ice melting at the microscale, thermal wave model instead of the classical 

Fourier’s law was employed so that microscopic behavior of heat transfer can be 

accurately described in studying ice melting at the micro length and time scale. The ice 

melting speeds obtained at the nano- and microscales are then compared with the 

analytical solution, which is derived at the macro length and time scale. It is found that 

ice melting speeds are different at various length and time scales. At the nano length and 

time scale, ice melts faster than at the micro and macro length and time scales. If only the 

length scale is considered, ice melts at the macroscale faster than at the nano- and 

microscales. It is concluded that ice melting speed is dependent not only on length scales 

but also on time scales. I believe that material phase change mechanisms are also scale 

dependent and merit further research. 
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6.1.2 Studies of copper crystallization 

MD simulations were conducted to study copper nucleation at the nanoscale. 

EAM potential was employed in simulations. System size with 4000, 32000 and 256000 

atoms are investigated to check size effect.  

The supercooling, superheating and the melting temperature were calculated 

through MD simulation, and the results had good agreement with those from literatures. 

The central symmetry order parameter was used to distinguish the solid and liquid atoms, 

and the threshold was 0.01 in my work. The detailed nucleation and nucleus growth at 

different temperatures were simulated and revealed. It is found that when the 

supercooling temperature was largely below the supercooling temperature limit of870K, 

heterogeneous nucleation would be observed rather than homogeneous nucleation. The 

nucleation always occurred at the close area as well as close to the boundary and grew 

very fast. The homogeneous nucleation was observed when the crystallization was at 

higher temperature. With different initial velocities but same initial configurations, the 

nuclei would occur at totally different place depending on the velocity values. The MFPT 

method was used to statistically calculate the critical nucleus size and the steady-state 

nucleation rate. Compare with the classical nucleation theory, the critical nucleation size 

was smaller and the nucleation rate was 2 orders of magnitude smaller. The solid liquid 

interface thickness δ was calculated. It was around 1.0 nm for two nuclei. 

The phase-field method was used to simulate copper crystallization at the 

microscale. The initial configuration was obtained from MD simulation of a 4000 atoms 

at the supercooling temperature 850K. First mapping the largest nucleus into two 

dimensional configuration, then setting phase field parameter of all the nodes in this 

nucleus as 1, i.e., that the region was solid. It is observed that the nucleus grew slower by 

phase-field method than directly MD simulation. The reason is that phase-field 

simulation averages out the rough structures while MD simulation always exhibit 

different shapes because nucleus occur everywhere in the simulation box. 
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6.2 Recommendations for future work 

In this thesis, I mainly studied phase change problems at the nanoscale and the 

microscale. For ice melting problem, the model used was thermal wave method. In the 

future work, dual phase lag method is recommended to simulate ice melting at the 

microscale because it has one more extra term, Tτ  reflecting temperature gradient lag 

comparing with thermal wave method. It may be more accurate to describe phase change 

problem at the microscale. 

For copper crystallization problem, the largest system size in MD simulations 

included 256000 atoms. Even I obtained good results, more large systems are highly 

recommended to generate better results. The issue is that a high performance computer 

system should be used to do such simulations. In my workstation which has 4 cores with 

4G memory, a system of 256000 atoms system running 3 ns needs nearly 10 days. For 

microscale simulation, the modified phase-field methods using thermal wave model or 

dual phase lag model instead of thermal diffusion model in heat transfer equation should 

be interesting. From my simulation results of ice melting at the microscale, the results 

using thermal wave model should be more accurate. 

I also recommend extending the microscale simulations from one dimension for 

ice melting and two dimensions for copper crystallization to three dimension simulations. 

The reason is obvious because three dimension simulations have perceptive results since 

the real world is in three dimensions no matter for ice melting or copper casting. It will 

not lose any information which occurred in two dimension simulations. 
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